Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Bioorg Chem ; 144: 107090, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38218070

RESUMO

Clinical experiences of herbal medicine (HM) have been used to treat a variety of human intractable diseases. As the treatment of diseases using HM is characterized by multi-components and multi-targets, it is difficult to determine the bio-active components, explore the molecular targets and reveal the mechanisms of action. Metabolomics is frequently used to characterize the effect of external disturbances on organisms because of its unique advantages on detecting changes in endogenous small-molecule metabolites. Its systematicity and integrity are consistent with the effective characteristics of HM. After HM intervention, metabolomics can accurately capture and describe the behavior of endogenous metabolites under the disturbance of functional compounds, which will be used to decode the bioactive ingredients of HM and expound the molecular targets. Metabolomics can provide an approach for explaining HM, addressing unclear clinical efficacy and undefined mechanisms of action. In this review, the metabolomics strategy and its applications in HM are systematically introduced, which offers valuable insights for metabolomics methods to characterizing the pharmacological effects and molecular targets of HM.


Assuntos
Medicamentos de Ervas Chinesas , Plantas Medicinais , Humanos , Medicamentos de Ervas Chinesas/farmacologia , Metabolômica/métodos
2.
Sci Rep ; 13(1): 20234, 2023 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-37981642

RESUMO

Population structure and lifestyles may have contributed to the epidemiological status of Chronic Kidney Disease due to Type 2 Diabetes (CKD-T2D). This study is a secondary data analysis. Using data from the Global Burden of Disease Study, we describe the changes in CKD-T2D burden and its influencing factors in the population aged 20-59 years from 1990 to 2019. Globally, the incidence, death, and Disability Adjusted Life Years (DALYs) rate of CKD-T2D showed an upward trend and increased with age, and the burden in males was higher than that in females. Population growth and aging were important driving factors for the increase of CKD-T2D DALY burden, while high systolic blood pressure and high body-mass index were the primary attributable risk factors. High body-mass index exhibited higher contributions to high Socioeconomic Development Index (SDI) countries, whereas low SDI countries were more impacted by high systolic blood pressure. The population attributable fraction of CKD-T2D DALY caused by high body-mass index was positively correlated with SDI, while high temperature and lead exposure were negatively correlated. Therefore, strengthening disease screening for people aged 20-59 years and formulating early intervention measures based on the level of socioeconomic development may effectively alleviate the burden of CKD-T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Pessoas com Deficiência , Insuficiência Renal Crônica , Masculino , Feminino , Adulto , Humanos , Anos de Vida Ajustados por Qualidade de Vida , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/epidemiologia , Carga Global da Doença , Fatores de Risco , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/etiologia , Saúde Global
3.
Trends Endocrinol Metab ; 34(12): 849-861, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37739878

RESUMO

Metabolic abnormalities are a hallmark of cancer cells and are essential to tumor progression. Oncometabolites have pleiotropic effects on cancer biology and affect a plethora of processes, from oncogenesis and metabolism to therapeutic resistance. Targeting oncometabolites, therefore, could offer promising therapeutic avenues against tumor growth and resistance to treatments. Recent advances in characterizing the metabolic profiles of cancer cells are shedding light on the underlying mechanisms and associated metabolic networks. This review summarizes the diverse detection methods, molecular mechanisms, and therapeutic targets of oncometabolites, which may lead to targeting oncometabolism for cancer therapy.


Assuntos
Neoplasias , Humanos , Neoplasias/metabolismo , Carcinogênese , Transformação Celular Neoplásica/metabolismo , Redes e Vias Metabólicas , Metaboloma
4.
Diabetes Metab Syndr Obes ; 16: 1915-1930, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37398945

RESUMO

Ferroptosis, an emerging form of regulated programmed cell death, has garnered significant attention in the past decade. It is characterized by the accumulation of lipid peroxides and subsequent damage to cellular membranes, which is dependent on iron. Ferroptosis has been implicated in the pathogenesis of various diseases, including tumors and diabetes mellitus. Traditional Chinese medicine (TCM) has unique advantages in preventing and treating type 2 diabetes mellitus (T2DM) due to its anti-inflammatory, antioxidant, immunomodulatory, and intestinal flora-regulating functions. Recent studies have determined that TCM may exert therapeutic effects on T2DM and its complications by modulating the ferroptosis-related pathways. Therefore, a comprehensive and systematic understanding of the role of ferroptosis in the pathogenesis and TCM treatment of T2DM is of great significance for developing therapeutic drugs for T2DM and enriching the spectrum of effective T2DM treatment with TCM. In this review, we review the concept, mechanism, and regulatory pathways of ferroptosis and the ferroptosis mechanism of action involved in the development of T2DM. Also, we develop a search strategy, establish strict inclusion and exclusion criteria, and summarize and analyze the application of the ferroptosis mechanism in TCM studies related to T2DM and its complications. Finally, we discuss the shortcomings of current studies and propose a future research focus.

6.
Technol Health Care ; 31(S1): 409-421, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37066940

RESUMO

BACKGROUND: Microglia express phosphatidylinositol 3-kinase (PI3K) has been implicated in the induction and maintenance of long-term potentiation (LTP) and in hippocampal synaptic plasticity. However, there are few studies on the interference of PI3K signal pathway in microglia. OBJECTIVE: The study goal is to gain a better understanding of the mechanism by which EA affects synapses provides insights into how electroacupuncture (EA) modulates synaptic plasticity in learning and memory. METHODS: Rat models of posttraumatic stress disorder (PTSD) were used to explore the effects of EA on microglial PI3K pathway, brain-derived neurotrophic factor (BDNF) and LTP, and the target and mechanism underlying the effects of EA on PI3K from the perspective of protein ubiquitination. RESULTS: EA induced microglial BDNF expression by activating the PI3K-AKT pathway, thereby facilitating LTP and synaptic plasticity. EA inhibited lincRNA 02023 to rescue the binding of WWP2 to PTEN, thereby promoting PTEN ubiquitination and degradation. CONCLUSION: The mechanism of EA improving the learning and memory ability of PTSD rats may be that it can promote the competitive combination of WWP2 and PTEN by inhibiting Linc RNA02023, and then lead to microglial PI3K and its pathway activation, BDNF up-regulation, and finally induce LTP and repair damaged synaptic plasticity.


Assuntos
Eletroacupuntura , Transtornos de Estresse Pós-Traumáticos , Ratos , Animais , Microglia/metabolismo , Fator Neurotrófico Derivado do Encéfalo , Transtornos de Estresse Pós-Traumáticos/terapia , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Epigênese Genética
7.
Front Chem ; 11: 1142287, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37065828

RESUMO

Natural products derived from herbal medicine are a fruitful source of lead compounds because of their structural diversity and potent bioactivities. However, despite the success of active compounds derived from herbal medicine in drug discovery, some approaches cannot effectively elucidate the overall effect and action mechanism due to their multi-component complexity. Fortunately, mass spectrometry-based metabolomics has been recognized as an effective strategy for revealing the effect and discovering active components, detailed molecular mechanisms, and multiple targets of natural products. Rapid identification of lead compounds and isolation of active components from natural products would facilitate new drug development. In this context, mass spectrometry-based metabolomics has established an integrated pharmacology framework for the discovery of bioactivity-correlated constituents, target identification, and the action mechanism of herbal medicine and natural products. High-throughput functional metabolomics techniques could be used to identify natural product structure, biological activity, efficacy mechanisms, and their mode of action on biological processes, assisting bioactive lead discovery, quality control, and accelerating discovery of novel drugs. These techniques are increasingly being developed in the era of big data and use scientific language to clarify the detailed action mechanism of herbal medicine. In this paper, the analytical characteristics and application fields of several commonly used mass spectrometers are introduced, and the application of mass spectrometry in the metabolomics of traditional Chinese medicines in recent years and its active components as well as mechanism of action are also discussed.

8.
Signal Transduct Target Ther ; 8(1): 132, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36941259

RESUMO

Metabolic abnormalities lead to the dysfunction of metabolic pathways and metabolite accumulation or deficiency which is well-recognized hallmarks of diseases. Metabolite signatures that have close proximity to subject's phenotypic informative dimension, are useful for predicting diagnosis and prognosis of diseases as well as monitoring treatments. The lack of early biomarkers could lead to poor diagnosis and serious outcomes. Therefore, noninvasive diagnosis and monitoring methods with high specificity and selectivity are desperately needed. Small molecule metabolites-based metabolomics has become a specialized tool for metabolic biomarker and pathway analysis, for revealing possible mechanisms of human various diseases and deciphering therapeutic potentials. It could help identify functional biomarkers related to phenotypic variation and delineate biochemical pathways changes as early indicators of pathological dysfunction and damage prior to disease development. Recently, scientists have established a large number of metabolic profiles to reveal the underlying mechanisms and metabolic networks for therapeutic target exploration in biomedicine. This review summarized the metabolic analysis on the potential value of small-molecule candidate metabolites as biomarkers with clinical events, which may lead to better diagnosis, prognosis, drug screening and treatment. We also discuss challenges that need to be addressed to fuel the next wave of breakthroughs.


Assuntos
Metaboloma , Metabolômica , Humanos , Biomarcadores , Metabolômica/métodos , Redes e Vias Metabólicas
10.
Front Chem ; 11: 1129717, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36762198

RESUMO

Metabolites are closely intertwined genotypes that can provide clear information about the final phenotype. The high-throughput analysis platform used to identify candidate metabolites and describe their contributions can help to quickly detect metabolic characteristics from large spectral data, which may lead to peak data preprocessing, statistical analysis and functional interpretation. Developing a comprehensive strategy for discovering and verifying bioactive metabolites can provide a large number of new functional biomarkers, and then more closely reveal their functional changes, which has relevant biological significance for disease diagnosis and prognosis treatment.

12.
Front Pharmacol ; 13: 1034515, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36506568

RESUMO

Background: Alpiniae Oxyphylla Fructus (AOF) is Traditional Chinese medicine and a dietary supplements for centuries, which posseses cardiotonic, neuroprotective, antioxidant, warming the kidney and nourish the spleen, these biological fuction is related to potential anti-aging properties. However, little is known about their effects on aging. This work aimed to investigate the effects of extracts of AOF on longevity and stress resistance in Caenorhabditis elegans (C. elegans) and the mechanisms that underlie its effects. Methods: Wild-type (WT) strand of C.elegans (N2)worms were cultured in growth medium with or without AOF. First, we examined the effects of AOF on lifespan, reproduction and healthspan assay, stress resistance and oxidative analysis, lipofuscin levels. Second, The levels of ROS and MDA, the antioxidant enzyme activities were examined to explore the underlying mechanism of AOF. Finally, the expression of the longevity-related genes were investigated to further understand the AOF's underlying mechanism. Results: The lifespan of C. elegans was prolonged by 23.44% after treatment with high-dose AOF (100 ug/ml). AOF alleviated aging-related declines in C. elegans health and enhanced resistance to heat shock. Furthermore, AOF decreased reactive oxygen species and malondialdehyde, increased the activities of superoxide dismutase and catalase, and reduced accumulation of fat. AOF upregulated the expression of sod-3, gst-4, daf-16, and skn-1 but downregulated the expression of daf-2 and age-1 and accelerated the translocation of DAF-16 into the nucleus. The extended lifespan induced by AOF was reversed in daf-16(mu86) and skn-1(zu135) mutants, indicating that this gene is involved in AOF-regulated longevity. Conclusion: Our findings demonstrated that AOF extends lifespan and healthspan and enhances stress via boosting the activity of the antioxidant enzyme and controlling the expression of genes associated with insulin/IGF signaling and SKN-1 pathways. As a result, this work suggested AOF as a possible candidate to reduce the signs of aging by activating and inhibiting target genes.

13.
Chin Med ; 17(1): 131, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36434729

RESUMO

BACKGROUND: Acute lung injury (ALI) is a severe inflammatory disease, underscoring the urgent need for novel treatments. Nauclea officinalis Pierre ex Pitard (Danmu in Chinese, DM) is effective in treating inflammatory respiratory diseases. However, there is still no evidence of its protective effect against ALI. METHODS: Metabolomics was applied to identify the potential biomarkers and pathways in ALI treated with DM. Further, network pharmacology was introduced to predict the key targets of DM against ALI. Then, the potential pathways and key targets were further verified by immunohistochemistry and western blot assays. RESULTS: DM significantly improved lung histopathological characteristics and inflammatory response in LPS-induced ALI. Metabolomics analysis showed that 16 and 19 differential metabolites were identified in plasma and lung tissue, respectively, and most of these metabolites tended to recover after DM treatment. Network pharmacology analysis revealed that the PI3K/Akt pathway may be the main signaling pathway of DM against ALI. The integrated analysis of metabolomics and network pharmacology identified 10 key genes. These genes are closely related to inflammatory response and cell apoptosis of lipopolysaccharide (LPS)-induced ALI in mice. Furthermore, immunohistochemistry and western blot verified that DM could regulate inflammatory response and cell apoptosis by affecting the PI3K/Akt pathway, and expression changes in Bax and Bcl-2 were also triggered. CONCLUSION: This study first integrated metabolomics, network pharmacology and biological verification to investigate the potential mechanism of DM in treating ALI, which is related to the regulation of inflammatory response and cell apoptosis. And the integrated analysis can provide new strategies and ideas for the study of traditional Chinese medicines in the treatment of ALI.

14.
Am J Transl Res ; 14(8): 5295-5307, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105044

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is a common autoimmune disease. Paederia scandens (Lour.) Merr is a common folk remedy used in Hainan, China, to dispel the wind and dampness associated with RA. METHODS: The active components of Paederia scandens were extracted using network pharmacology. The potential targets of active components were used to determine activated pathways, and the in vitro effects of Paederia scandens extracts were verified in RA fibroblast-like synoviocytes (HFLS-RA). RESULTS: We identified 27 active components using ultra-high-performance liquid chromatography (UHPLC)-quadrupole time-of-flight (QTOF)-mass spectrometry (MS). Among the major target genes with high connectivity, IL-1ß, PI3K, TNF, and JAK2 are known to play key roles in RA development. High-affinity interactions were identified between active compounds in Paederia scandens extract and Janus kinase JAK 2, which are key components of the JAK-signal transducer and activator of transcription (STAT) signaling pathway. In HFLS-RA cells, Paederia scandens extract treatment reduced the mRNA levels of IL-6, IL-1ß, and IL-17. Paederia scandens extract treatment also significantly inhibited the phosphorylation of JAK 2 and STAT3, regulating cell proliferation. CONCLUSIONS: Based on these results, we confirmed that Paederia scandens has potential for application as a therapeutic and preventive food and acts through the modulation and suppression of JAK-STAT pathway activation to control the inflammatory response in RA.

15.
Artigo em Inglês | MEDLINE | ID: mdl-35607519

RESUMO

Safflower has long been used to treat coronary heart disease (CHD). However, the underlying mechanism remains unclear. The goal of this study was to predict the therapeutic effect of safflower against CHD using a network pharmacology and to explore the underlying pharmacological mechanisms. Firstly, we obtained relative compounds of safflower based on the TCMSP database. The TCMSP and PubChem databases were used to predict targets of these active compounds. Then, we built CHD-related targets by the DisGeNET database. The protein-protein interaction (PPI) network graph of overlapping genes was obtained after supplying the common targets of safflower and CHD into the STRING database. The PPI network was then used to determine the top ten most significant hub genes. Furthermore, the DAVID database was utilized for the enrichment analysis on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). To validate these results, a cell model of CHD was established in EAhy926 cells using oxidized low-density lipoprotein (ox-LDL). Safflower was determined to have 189 active compounds. The TCMSP and PubChem databases were used to predict 573 targets of these active compounds. The DisGeNET database was used to identify 1576 genes involved in the progression of CHD. The top ten hub genes were ALB, IL6, IL1B, VEGFA, STAT3, MMP9, TLR4, CCL2, CXCL8, and IL10. GO functional enrichment analysis yielded 92 entries for biological process (BP), 47 entries for cellular component (CC), 31 entries for molecular function (MF), and 20 signaling pathways, which were obtained from KEGG pathway enrichment screening. Based on these findings, the FoxO signaling pathway is critical in the treatment of CHD by safflower. The in vitro results showed that safflower had an ameliorating effect on ox-LDL-induced apoptosis and mitochondrial membrane potential. The western blot results showed that safflower decreased Bax expression and acetylation of FoxO1 proteins while increasing the expression of Bcl-2 and SIRT1 proteins. Safflower can be used in multiple pathways during CHD treatment and can exert anti-apoptotic effects by regulating the expression of Bax, Bcl-2, and SIRT1/FoxO1 signaling pathway-related proteins.

16.
Clin Ther ; 44(2): 246-256.e10, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35067385

RESUMO

PURPOSE: Tripterygium glycosides (TG) are widely used for the treatment of kidney disease in China. However, the application of TG in clinical practice is limited, as the therapeutic window is narrow, and the therapeutic dose is close to the toxic dose. In addition, the therapeutic effect of TG combined with Western medicine has not been fully elucidated. This study sought to explore standardized treatment, efficacy, and safety of TG combined with Western medicine for patients with type 2 diabetic kidney disease (T2DKD). METHODS: The PubMed, EMBASE, Cochrane Library, Chinese National Knowledge Infrastructure, Chinese Biomedical Literature, Chinese Scientific Journal, and Wan Fang databases were searched for randomized controlled trials of TG combined with Western medicine on T2DKD from their inception until May 4, 2021. A random effects model was used to explore heterogeneity of studies. FINDINGS: A total of 33 studies with 2034 patients were included in the current meta-analysis. The findings showed that TG combined with Western medicine effectively reduced urinary albumin excretion rates (standardized mean difference, -2.55; 95% CI, -4.70 to -0.40; P = 0.02), 24-hour urinary protein level (mean difference, -0.79; 95% CI, -1.22 to -0.36; P = 0.0003), and serum creatinine level (mean difference, -8.23; 95% CI, -14.48 to -1.99; P = 0.01) and increased albumin level (mean difference, 4.70; 95% CI, 3.27 to 6.13; P < 0.00001) in patients with T2DKD. No serious adverse reactions occurred, and the incidence of adverse events in the TG combined with Western medicine treatment group was slightly higher than in the control group (8.14% vs 2.65%). The results were stable, and a significant publication bias was not detected (P > 0.05). IMPLICATIONS: Based on our results, TG combined with Western medicine may be an effective and safe therapy for T2DKD; the best treatment duration may be 3 to 6 months. Nevertheless, larger, longer multicenter studies should be conducted for clinical application of the regimen to patients in more countries and regions. PROSPERO registration number: CRD42021259466.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Medicamentos de Ervas Chinesas , Albuminas/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Medicamentos de Ervas Chinesas/efeitos adversos , Feminino , Glicosídeos/efeitos adversos , Humanos , Masculino , Tripterygium/química
17.
Front Med (Lausanne) ; 8: 670744, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249969

RESUMO

Background: Respiratory viruses are known to contribute to asthma exacerbations. A meta-analysis of three studies reported no association between coronavirus disease 2019 (COVID-19) mortality and preexisting asthma. This study aimed to investigate the mortality of patients with COVID-19 in relation to preexisting asthma and other allergic diseases associated with changes in respiratory function. Methods: PubMed, Embase, and the Cochrane Library were queried for papers published up to April 9, 2021: (1) population: patients who tested positive for SARS-CoV-2 according to the WHO guidelines; (2) exposure: preexisting asthma or allergic rhinitis; (3) outcomes: mortality, ICU admission, and/or hospitalization; and (4) language: English. For studies that reported adjusted models, the most adjusted model was used for this meta-analysis; otherwise, unadjusted results were used. Results: Twenty-four studies (1,169,441 patients) were included in this meta-analysis. Patients who died of COVID-19 were not more likely to have preexisting asthma (OR = 0.95, 95%CI: 0.78-1.15, P = 0.602; I2 = 63.5%, Pheterogeneity < 0.001). Patients with COVID-19 and admitted to the ICU (OR = 1.17, 95%CI: 0.81-1.68, P = 0.407; I2 = 91.1%, Pheterogeneity = 0.407), or hospitalized (OR = 0.91, 95%CI: 0.76-1.10, P = 0.338; I2 = 79.1%, Pheterogeneity < 0.001) were not more likely to have preexisting asthma. The results for mortality and hospitalization remained non-significant when considering the adjusted and unadjusted models separately. The results from the sensitivity analyses were consistent with the primary analyses, suggesting the robustness of our results. Conclusion: This meta-analysis suggests that the patients who died from COVID-19, were admitted to the ICU, or hospitalized were not more likely to have asthma.

18.
Braz J Med Biol Res ; 54(8): e10841, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34037095

RESUMO

The present study was conducted to investigate the underlying mechanisms and effective components of Polygonum hydropiper in ethanol-induced acute gastric mucosal lesions. The ethanol extract was purified on an AB-8 macroporous resin column and eluted with 60% ethanol and was then injected into the HPLC system for quantitative analysis. Sprague-Dawley rats were orally pretreated with P. hydropiper extract (PHLE; 50, 100, and 200 mg/kg) for 5 days and then absolute ethanol was administered to induce gastric mucosal damage. One hour after ethanol ingestion, the rats were euthanized and stomach samples were collected for biochemical analysis. Antioxidant enzymes and anti-inflammatory cytokines were quantified. Western blotting was used to detect the expression levels of proteins. Cell proliferation was assayed by CCK-8 assays. The proportion of total flavonoids in the final extract of P. hydropiper was 50.05%, which contained three major bioactive flavonoid constituents, including rutin, quercitrin, and quercetin. PHLE significantly increased cell viability and effectively protected human gastric epithelial cells-1 against alcohol-induced damage in vitro. PHLE pretreatment attenuated gastric mucosal injuries in a dose-dependent manner in rats, and increased the activity of superoxide dismutase, glutathione peroxidase, and glutathione, and decreased the levels of malondialdehyde in gastric tissue. Pretreatment with PHLE also reduced the generation of the pro-inflammatory cytokines tumor necrosis factor-α and interleukin-1ß in gastric tissue by downregulating the expression of nuclear factor-kappa B. PHLE exerted protective effects against gastric injury through antioxidant and anti-inflammatory pathways. Flavonoids might be the main effective components of P. hydropiper against gastric mucosal injury.


Assuntos
Antioxidantes , Polygonum , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Etanol/toxicidade , Mucosa Gástrica , Extratos Vegetais/farmacologia , Ratos , Ratos Sprague-Dawley
19.
Front Pharmacol ; 12: 792977, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35111058

RESUMO

(R)-5-hydroxy-1,7-diphenyl-3-heptanone (DPHC) from the natural plant Alpinia officinarum has been reported to have antioxidation and antidiabetic effects. In this study, the therapeutic effect and molecular mechanism of DPHC on type 2 diabetes mellitus (T2DM) were investigated based on the regulation of oxidative stress and insulin resistance (IR) in vivo and in vitro. In vivo, the fasting blood glucose (FBG) level of db/db mice was significantly reduced with improved glucose tolerance and insulin sensitivity after 8 weeks of treatment with DPHC. In vitro, DPHC ameliorated IR because of its increasing glucose consumption and glucose uptake of IR-HepG2 cells induced by high glucose. In addition, in vitro and in vivo experiments showed that DPHC could regulate the antioxidant enzyme levels including superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px), thereby reducing the occurrence of oxidative stress and improving insulin resistance. Western blotting and polymerase chain reaction results showed that DPHC could promote the expressions of nuclear factor erythroid 2-related factor 2 (Nrf2), the heme oxygenase-1 (HO-1), protein kinase B (AKT), and glucose transporter type 4 (GLUT4), and reduced the phosphorylation levels of c-Jun N-terminal kinase (JNK) and insulin receptor substrate-1 (IRS-1) on Ser307 both in vivo and in vitro. These findings verified that DPHC has the potential to relieve oxidative stress and IR to cure T2DM by activating Nrf2/ARE signaling pathway in db/db mice and IR-HepG2 cells.

20.
Braz. j. med. biol. res ; 54(8): e10841, 2021. graf
Artigo em Inglês | LILACS | ID: biblio-1249329

RESUMO

The present study was conducted to investigate the underlying mechanisms and effective components of Polygonum hydropiper in ethanol-induced acute gastric mucosal lesions. The ethanol extract was purified on an AB-8 macroporous resin column and eluted with 60% ethanol and was then injected into the HPLC system for quantitative analysis. Sprague-Dawley rats were orally pretreated with P. hydropiper extract (PHLE; 50, 100, and 200 mg/kg) for 5 days and then absolute ethanol was administered to induce gastric mucosal damage. One hour after ethanol ingestion, the rats were euthanized and stomach samples were collected for biochemical analysis. Antioxidant enzymes and anti-inflammatory cytokines were quantified. Western blotting was used to detect the expression levels of proteins. Cell proliferation was assayed by CCK-8 assays. The proportion of total flavonoids in the final extract of P. hydropiper was 50.05%, which contained three major bioactive flavonoid constituents, including rutin, quercitrin, and quercetin. PHLE significantly increased cell viability and effectively protected human gastric epithelial cells-1 against alcohol-induced damage in vitro. PHLE pretreatment attenuated gastric mucosal injuries in a dose-dependent manner in rats, and increased the activity of superoxide dismutase, glutathione peroxidase, and glutathione, and decreased the levels of malondialdehyde in gastric tissue. Pretreatment with PHLE also reduced the generation of the pro-inflammatory cytokines tumor necrosis factor-α and interleukin-1β in gastric tissue by downregulating the expression of nuclear factor-kappa B. PHLE exerted protective effects against gastric injury through antioxidant and anti-inflammatory pathways. Flavonoids might be the main effective components of P. hydropiper against gastric mucosal injury.


Assuntos
Animais , Ratos , Polygonum , Antioxidantes/farmacologia , Extratos Vegetais/farmacologia , Ratos Sprague-Dawley , Etanol/toxicidade , Mucosa Gástrica , Anti-Inflamatórios/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...